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Heat-Buildup and Blow-out of Rubber Blocks

A.N.Gent and M.Hindi

Institute of Polymer Science and Polymer Engineering Center

The University of Akron , Akron , Ohio , 44325

1. Introduction

When rubber is deformed, some part of the energy of deformation

is transformed into heat as a result of various dissipative

processes. When thick rubber blocks are subjected to repeated

deformations, they can become so hot in the interior that they

explode. This phenomenon is known as " blow-out ". It is an

important mode of failure in thick rubber articles, such as tire

treads and tank track pads, that are subjected to severe and

frequently-applied loads. It is attributed here to thermal

decomposition of the rubber compound when the heat generated

internally is not conducted away rapidly enough and the internal

temperature becomes high enough to cause decomposition. Volatile

products then develop an internal pressure sufficiently iarge to

tear open a path to the exterior.

In spite of its obvious importance, there is surprisingly little

published work dealing with blow-out. Many fundamental. questions

appear to be unanswered. Is the critical temperature at which

blow-out occurs affected by the detailed chemistry of thermal

decomposition, and, hence, is it different for different elastomers?

Does it depend upon the physical properties of the rubber compound;

for example, stiffness, extensibility, or resistance to tearing?

Does repeated stressing play a direct role in causing the failure,

as in mechanical fatigue of rubber, or is it merely a mechanism for

raising the internal temperature to the level at which rapid

decomposition takes place? In an attempt to answer some of these

i"'C oll
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questions an experimental study has now been carried out of heat

build-up and blow-out in some selected rubber compounds. The results

are reported here and compared with the predictions of a simple

model of the blow-out process.

It should perhaps be pointed out that there is not at present a

single, well-accepted, mechanism for blow-out. It was first thought

to be a mechanical fatigue cracking process, aggravated by the high

temperatures set up by cyclic stressing ( I ). Other studies have

attributed the failure to a biaxial tensile fracture in the center

of the block, where the material is also weakened by high

temperature ( 2,3 ). In contrast, attention is focussed here on the

pressure set up in the center of the block. Failure is attributed to

the development of an internal pressure large enough to expand any

pre-existing internal cavity to the point of rupture. A similar

hypothesis has been shown to account for internal fractures produced

in rubber by superheating dissolved liquids ( 4 ). In the present

case, pressure is thought to be generated by heating a volatile

substance within the rubber compound; either an ingredient of the

rubber mix, a byproduct of vulcanisation, or a product of thermal

decomposition. This simple model is shown to account for a number of

aspects of blow-out. In particular, it appears that

externally-imposed stresses are not necessary to induce blow-out;

the same type of failure can be brought about by the action of heat

alone.

It may be asked: Why, then, is blow-out not also brought about

by heating in a regular oven or autoclave ? In those cases, heat is

conducted to the interior of the rubber from the surface and hence

the hottest points, at which decomposition begins, are at the

surface. Thus, volatile materials can readily escape. In contrast,
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energy dissipated as heat as a result of mechanical working, and

heat from microwave energy, is generated throughout the rubber. It

is lost only from the surface. As a result, the highest temperature

is developed at the center of the block.

As an illustration, if a thin layer, of thickness H, is

uniformly heated at a rate _ (J s- m- 3) while the surfaces are

maintained at a constant temperature To the equilibrium temperature

distribution within the layer will be parabolic in form, the maximum

temperature T m in the central plane being given by

Tm = To + ( Q H2 /8 k )

where K denotes the coefficient of thermal conductivity of the

material. Because rubber is a rather poor conductor of heat the

maximum temperature can reach high values, especially for thick

layers. Moreover, rubber compounds that dissipate a high proportion

of the energy of deformation are particularily liable to internal

heating and hence to blow-out.

The experiments reported here were undertaken to find out

whether simple heating was sufficient to cause blow-out or whether

mechanical working was necessary for this type of failure to occur.

In addition, marked differences between different rubbery materials

and different compound formulations have been investigated.

S. .. . .. ... . .. . • . •,• • ,• . . . . . .• ' .•i•. ,• •I,
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2. Experimental details

Cylindrical rubber specimens, 25mm high and 17.5mm in diameter,

and sheets of various thicknesses were made in a simple compression

mold. The mix formulations and vulcanization conditions are given in

Table 1. Values of Young's modulus for each material were

determined from the initial slopes of meaasured stress-strain

relations in compression. These ineasurements were made at ambient

temperature and on blocks heated to elevat'ed temperatuXrs, close to

the blow-out temperatures. The results are included in the Appendix.

Specimens were subjected to repeated compression using a

Goodrich Flexometer, as described in ASTM D623 - 67 ( 5 ). The

frequency of loading was 30 Hz and the stroke (double - amplitude)

of imposed oscillation was 6.35mm, The severity of the test was

adjusted by varying the static compressive load applied to the

sample by means of a balance beam. Loads of either 14 or 19 kg were

attached to the beam for this purpose. They correspond to

compressive loads on the sample of 32 and 43 kg, respectively. The

experiments were terminated when the sample failed by blow-out,

typically within 15 min.

Measurements of the temperature of the sample were made

initially by means of a thermocouple attached to the surface on

which the sample rests. Due to the pronounced thermal gradients set

up in the sample by heat loss from the exposed surface, this

temperature was generally far below that existing at the center of

the rubber cylinder, Table t. In order to determine the real

blow-out temperature, a probe thermocouple ("Piercing Probe, Type

T" with "Digi-Sense J,K,T Thermometer", Cole-Palmer Instrument r
Company) was inserted into the sample, as close as possible to its

center, immediately after blow-out had occurred. It is these

i ! a a
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temperatures that are reported below as blow-out temperatures.

In order to duplicate the internal heating brought about by

repeated compressions without imposing any deformation, other

samples were heated in a small microwave oven ( Sears Kenmore model

87213/4, 900W, 2450MHz ). Blow-outs occurred similar to those

obtained with the Goodrich Flexometer, Visual comparisons are given

in Figures 1 and 2. The times required for blow-out were much

shorter, however, being typically less than i min.

Difficulties were experienced with soft rubber compounds in

both experiments. In the Goodrich Flexometer they tended to spring

out of position during cyclic compression. And materials containing

only small amounts of carbon black, less than about 20 parts by

weight per 100 parts of rubber, did not heat up sufficiently rapidly

in the microwave oven to undergo blow-out. Thus, results are given

only for rubber compounds containing 25 or more parts of carbon

black.

Some of the rubber compounds were examined with a DuPont

Thermogravimetric Analyzer (Model 951) for the amount of

weight loss that they experienced on heating in an inert atmosphere

(nitrogen) at about 100C per min.



7

3. Experimental results and discussion

(i) Blow-out due to repeated compression

Blow-out experiments were carried out on selected samples, using

the Goodrich flexometer, Temperatures in the center of the rubber

blocks, measured immediately after blow-out, are given in Table 2...

They were considerably higher than those measured at the platen

surface, by as much as 500C. This difference indicates the severity

of the temperature gradients set up in Goodrich flexometer samples,

presumably due to cooling from the surfaces.

As the results in Table 2 show, the actual temperatures reached

in the interior of the rubber at blow-out were about 2000C , similar

to polymer decomposition temperatures. This suggests that blow-out

is, in fact, a consequence of thermal decomposition of the polymer.

In order to test this hypothesis, some experiments were carried out

with a microwave oven, so that samples could be heated without being

subjected to mechanical working.

(ii) Blow-out due only to heating

Samples of an SBR compound (SBR2), a natural rubber compound

(NR2), and two butyl rubber compounds (IIR1 and IIR2), were

subjected to blow-out both by repeated compression using the

Goodrich flexometer and by direct heating in the microwave oven. As

the results given in Table 2 show, the measured temperatures at

which blow-out occurred were approximately the same in both

experiments, although the times taken to reach blow-out were quite

different ; about 10 - 15 min in the flexometer experiments but only

about 1 min in the microwave oven. And the appearance of the failed

samples was quite similar ( Figures 1 and 2 ). Thus, the criterion

for blow-out seems to be a relatively simple one : the center of the

sample must reach a certain critical temperature. Mechanical working

* .*'' AM.



is only a means of generating heat internally and reaching this

critical condition at the center of the sample; it does not appear

to play any other significant role in causing blow-out.

Although blow-out by flexing and by microwave heating were

found to be substantially the same, there were significant

differences between the appearance of samples. One obvious feature

of flexed samples was their permanent set, shown by the barrel shape

and retained compression evident in Figures I and 2. Another

characteristic feature was the concentration of decomposition in the

center of the sample, Figures 3 and 4, reflecting the development of

the highest temperatures here. In contrast, samples that-had

undergone microwave heating were found to decompose over larger

internal regions, wherever particularly severe heating had occurred.

These zones were often not in the center of the sample because the

microwave heating was not especially uniform.

Apart from these differences, the two processes were

remarkably similar, taking place at the same temperature and

resulting in materials with the same physical appearance, But the

actual blow-out temperatures and the character of the decomposition

products were found to be strikingly different for different

elastomers and, to some extent, for different formulations of the

same elastomer. Results for some typical compounds are presented

below.

f I - ulLýf [ _rý x % O i r V J 1 I. I"J16 1, ,, II '' I



(iii) Blow-out temperatures of typical rubber compounds

The amounts of sulfur and accelerator were adjusted to give two

SBR compouids of markedly different elastic modulus ( SBR2 and

SBR3 ). Blow-out was found to take place at significantly different

temperatures, the lower modulus compound failing at a lower

temperature, Table 3. Similarly, when the amount of carbon black in

the compound formulation was varied ( SBRI and SBR3 ), the lower

modulus material suffered blow-out at a lower temperature than the

higher modulus one, Table 3. In general, higher modulus materials

appeared to withstand higher temperatures than softer ones before

blow-out.

Of course, it is the modulus at high temperatures that is

relevant in this comparison. Measurements of modulus at temperatures

close to the blow-out temperature are included in Table:5; they

confirm the general conclusion reached above that materials that are

harder at operating temperatures can withstand higher temperatures

before blow-out.

This feature is consistent with the proposed mechanism of

blow-out. The critical pressure at which a small internal cavity in

a rubber block will expand indefinitely is given approximately by

5E/6 , where E is Young's modulus (4,6,7). Thus, a harder material

would be expected to withstand higher internal pressures without

rupturing.

Some compounds appear to soften markedly at high temperatures

and undergo blow-out immediately. The butyl rubber materials are a

notable example, Table 3. Indeed, it seems likely that blow-out

occurs when these compounds have softened to such an extent that

they are unable to withstand even slight pressures generated by a

volatile constituent within them.
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Thus, there appear to be two factors governing the

susceptibility of rubber compounds to blow-out. The first is their

propensity to generate volatile substances at high temperatures. The

second is their tendency to soften on heating and thus lose

resistance to expansion of a pressurized internal cavity. Although

these two processes are directly connected in some instances, they

are not inevitably related. For example, one could envisage a

rubbery polymer that decomposed on heating to yield a

highly-volatile gaseous product such as 002 or H2 0, but did not

undergo main-chain or crosslink rupture and hence did not soften

significantly. On the other hand, some vulcanizates might undergo

thermal decomposition of crosslinks, and soften appreciably, without

generating substantial quantities of volatile matter.

Of the materials examined here, the butyl rubber compounds

showed a striking degree of softening as a result of thermal

decomposition. They were transformed into soft, fluid materials,

resembling butter in consistency, at blow-out temperatures,

Figure 5. Thus, only a slight internal pressure would be necessary

to cause blow-out of these materials. In contrast, NR and SBR

compounds were found to be stiffer than others initially and to

retain their stiffness at high temperatures, as the values of

Young's modulus given in Table 3 show. For these materials,

therefore, a high internal pressure would be necessary to cause

unbounded expansion of an internal cavity, Indeed, they were found

to have higher blow-out temperatures than other materials. SBR

failed more by explosive rupture than by profuse evolution of gas. A

cross-section of an SBR sample is shown in Figure 6. The fracture

plane where the rubber has been torn apart is evident but there are
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only slight signs of the gas-filled cavities that are assumed to be

the origin of fracture in this material, as in the others.

Natural rubbor compounds became soft and sticky as a result of

thermal decomposition, whereas the SBR compounds remained relatively

dry. In both cases, however, blow-out took place explosively,

especially for the NR materials with C-C or monosulfide cross-

links (NR2, NR3, NR4 ) which blew out at relatively high

temperatures, Table 3. On the other hand, polybutadiene compounds

did not undergo blow-out, even after long periods of heating in the

microwave oven, and whatever the amount of carbon black

incorporated. Instead, the samples softened, swelled, and became

porous in the interior, Figure 7 without actually exploding. As

they became hotter and hotter they gave off a dense white smoke but

still did not burst open as the other rubber samples did.

Apparently, the amount of volatile material produced by this polymer

is significantly smaller, or the vapor pressure of the products of

decomposition is significantly lower. "Blow-out" temperatures for

polybutadiene samples, given in Table 3, were taken as the

temperatures measured in the center of samples immediately after

they exhibited pronounced swelling.

Possible origins of the volatile substances that cause blow-out

are discussed in the following section.

.% N """I
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(iv) Possible causes of blow-out

Certain ingredients in rubber formulations might be expected to

volatilise at high temperatures and thereby create high internal

pressure, causing blow-out in extreme cases. If a significant amount

of water is present, for example, then high internal pressures would

be generated at temperatures much above 100 °C. In order to see

whether this is an important mechanism of blow-out, a small amount

of salt was included in several mix formulations and the samples

were soaked in water for several days before testing, so that they

absorbed 1-2% of water by weight. They were found to undergo

blow-out at virtually the same temperatures as dry samples,

indicating that trapped water is not the principal cause of blow-out

in rubber compounds.

Another possible volatile ingredient of many of the present

compounds is a hydrocarbon processing oil. However, when an

otherwise identical formulation was employed with processing oil

omitted (SBR1 and 1IR2), the vulcanised samples were found to

blow-out at about the same temperatures as before, and in the same

way, Table 3. Thus, it does not appear that the processing oil

itself was responsible for blow-out.

There remains the possibility that some other ingredient of the

mix formulations, or some product of the vulcanization reactions, is

the important volatile substance. While this possibility cannot be

completely discounted, it should be noted that the observed blow-out

temperatures were quite different for different polymers, even when

their mix formulations and vulcanization reactions were rather

similar. On the other hand, the blow-out temperatures were very

different for different vulcanization recipes with the same polymer.

It is therefore thought that the vulcanizates themselves were

WI - i " i - -
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responsible both for the volatile products and for the lowered

resistance to containing them that together resulted in blow-out.

They are known to differ substantially in their susceptibility

to thermal decomposition. Vulcanizates with polysulfide crosslinks

will soften at lower temperatures than those with monosulfide or

with carbon-carbon crosslinks because of the lower strength of such

linkages ( 8,9 ). If crosslink rupture is also accompanied by the

production of a volatile substance, then the occurrence of blow-out

at temperatures at which a significant extent of crosslink rupture

takes place is to be expected.

The differences observed between different crosslinking systems

with the same polymer are in accord with this hypothesis. Peroxide

recipes, yielding C-C crosslinks, and monosulfide ( "sulfurless" )

recipes gave the highest blow-out temperatures, Table 3, approaching

the temperatures at which polymer decomposition would be expected.

-And the differences observed between the different elastomers can be

accounted for by differences in stability of the crosslinks formed

within them, even when the recipes employed were rather similar.

Thus, although the exact nature of the volatile constituent is

still not clear, the hypothesis that it is a gaseous product of the

thermally-excited decomposition of crosslinks in vulcanized rubber

accounts reasonably well for the main features of blow-out, namely,

the general temperature range in which it occurs, its close

relationship with softening temperatures, the lower values of

blow-out temperature found for materials containing polysulfidic

crosslinks in comparison with C-C crosslinks, and the marked

differences observed between different polymers.

''pv
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(v) Effect of sample thickness

In order to see whether the thickness of the sample had any

effect on its propensity to blow-out, specimens were prepared from

the same material, an SBR compound, with widely different

dimensions. As the results given in Table 4 show, they all suffered

blow-out at about the same temperature, and after about the same

heating time in the microwave ovei,. Thus, it appears that any sample

will blow out if the critical temperature is reached at its center.

It should be noted, however, that the thinner sheets, only about 3mm

in thickness or less, did not really explode but instead developed a

pronounced swelling to form a large blister or aneurysm, Figure 8,

resembling the behavior discussed above of polybutadiene compounds.

This feature suggests that the principal factor in deciding

whether a specimen will explode or merely swell is the amount of

volatile material produced. Thin sheets will have a smaller volume

of material at decomposition temperatures than thicker ones and will

therefore generate a correspondingly smaller amount of volatiles. It

may be surmised that polybutadiene compounds produce a smaller

quantity of gaseous products on thermal decomposition, possibly

reflecting the different paths that free-radical reactions tend to

take in this polymer, resulting in addition rather than molecular

scission ( 10 ).

,1,.. . --
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(vi) Unresolved issues

Two features remain unexplained.

Even for simple rubber compounds with C-C crosslinks, the

measured blow-out temperatures were surprisingly low, at most 250 °C,

whereas rapid thermal decomposition of the same materials was found

by TGA not to take place below about 3000C. While it is possible that

the measured blow-out temperatures were systematically in error,

because of delays in inserting the thermocouples and difficulties in

obtaining good thermal contact with the fractured rubber surfaces,

the results were consistent and reproducible. Improved experimental

techniques are needed to determine exactly what the blow-out

temperatures are. The present measurements should probably be

regarded as giving correct relative values but an underestimate of

the real temperatures.

The second unknown is the actual volatile material or materials

responsible for blow-out. Several attempts were made to collect and

analyze the vapors emitted by samples undergoing thermal

decomposition. They were found to consist of hydrocarbons, probably

including the elastomer monomer, but no substance characteristic of

the particular orosslinking system used could be detected. And yet

large differences were found in blow-out temperatures for different

vulcanizates of the same polymer. Again, improved experimental

techniques are needed to determine the decomposition products

completely.

- i
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4. Conclusions

The phenomenon of explosive "blow-out" of thick rubber blocks,

under repeatedly-applied, severe compressive loads, is due entirely

to the development of high internal temperatures. If the compound is

electrically conductive, the phenomenon can be duplicated in a

microwave oven without imposing any mechanical loads.

Blow-out appears to consist of the expansion to burst of pressur-

ized cavities within the rubber compound. Pressure appears to be

generated internally by a volatile constituent or decomposition

product of the rubber. Expansion is restrained by elastic stresses

set up in the rubber as the cavity expands. Bursting is made easier

in some compounds because they soften markedly at high temperatures

and thus lose resistance to cavity expansion.

Different elastomers have strikingly different blow-out

temperatures, Butyl rubber compounds blow out at relatively low

temperatures, about 1800C, whereas NR and SBR compounds blow out at

temperatures of about 2000C or higher. Also, 1l.'ferent vulcanizate

structures have different blow-out temperature4. For example,

materials with C-C or monosulfidic crosslinks show higher blow-out

temperatures than those with polysulfidic crosslinks.

Polybutadiene compounds did not blow out at all. Instead, they

developed internal cavities that grew in size and number but never

burst open to the exterior, probably because the internal pressure

never reached sufficiently high levels.

It is concluded that the principal cause of blow-out is the

generation at high temperatures of sufficient quantities of a

volatile decomposition product, but the reaction is specific to the

particular elastomer and crosslinking system employed. It does not

appear to consist of simple thermal decomposition of the hydrocarbon

,1 .... .... ,1 .... .... 1
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elastomer, which would require higher temperatures than those

observed at blow-out.
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Table 2: Blow-Out Temperatures Tb and Times tin Flexometer

and Microwave Experimenits.

Flexometer Microwave

Material Tb (OC) Tb (*C) t(s) Tb (0C) t(s)

Sample base Sample center Sample center

NR2. 164 181 510 176 i14 53

SBR3 145 ± 7 215 420 227 t9 47

IIRl 144 182 ± 2 1260 182 ±4 27

IIR2 146 184 ± 5 1200 185 ±5 26
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Table 2: Blow-Out Temperatures Tb and Times t in Flexometer

and Microwave Experiments.

Flexometer Microwave

Material Tb ( 0C) Tb ("C) t(s) Tb ( 0 C) t(s)

Sample base Sample center Sample center

NRI 164 181 510 176 ± 14 53

SBR3 145 ± 7 215 420 227 ± 9 47

IIR1 144 182 1 2 1260 182 ± 4 27

IIR2 146 184 ± 5 1200 185 ± 5 26

1: flVV_,7RVAVkIW" A A
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Table 3: Effect of Young's Modulus E on Microwave Blow-Out

Temperatures Tb for Various Rubber Compounds.

Material E (MPa) E (MPa) Tb (OC) Blow-Out Time t(s)

at 250 C at 1900C

NRI 4.5 2.2 176 ± 14 53

NR2 6.1 4.5 215 ± 7 45

NR3 3.2 2.9 213 ± 5 58

NR4 4.5 4.3 222 ± 7 93

SBRI 4.5 3.4 196 ± 8 180

SBR2 3.6 --- 173 ± 10 43

SBR3 8.1 4.5 227 ± 9 47

SBR4 4.5 5.1 252 ± 5 75

"BRi 1.3 --- 200 ± 3 56

BR2 2.0 --- 192 76

IIRl 7.7 1.2 182 ± 4 27

1IR2 6.8 0.8 185 ± 5 26

.... .....
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Table 4: Effect of Sample Thickness on Microwave Blow-Out

Temperature (Compound SBR3).

Sample

Thickness (mm) Blow-Out Temperature ('C)

(Cylinder, diameter 17.5 mm, 227 ± 9

height 25 mm)

12.7 232 ± 7

7 230 ± 8

4 232 ± 6*

2 228 ± 10*

Note: Results marked with an asterisk denote temperatures of

pronounced swelling of the sample (see Figure 3).

Explosive blow-out did not take place in these cases.
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Figure Legends

Figure 1. Blow-out samples of NRI. (a) Flexometer. (b) Microwave.

Figure 2. Blow-out samples of SBR3. (a) Flexometer. (b) Microwave.

Figure 3. Cross-section of NRI samples cut open shortly before

blow-out. (a) Flexometer. (b) Microwave.

Figure 4. Cross-section of SBR3 samples cut open shortly before

blow-out. (a) Flexometer. (b) Microwave.

Figure 5. Cross-section of a butyl rubber sample (IiRi), cut

open after blow-out in a microwave oven.

Figure 6. (a) Cross-section of an SBR1 sample, cut open shortly

before blow-out in a microwave oven.

(b) View of a similar sample after blow-out.

Figure 7. Cross-sections of BRi samples, cut open after various

periods of heating in a microwave oven. (a) 2 min,

(b) 6 min, (c) 10 min.

Figure 8. Cross-sections of thin samples of SBR3, cut open after

heating in a microwave oven for 40 s. Sheet thickness:

(a) 4 mm, (b) 2 mm.

MIN
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